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Liquid of viscosity µ moves slowly through a cylindrical tube of radius R under
the action of a pressure gradient. An immiscible force-free drop having viscosity λµ
almost fills the tube; surface tension between the liquids is γ . The drop moves relative
to the tube walls with steady velocity U , so that both the capillary number Ca = µU/γ

and the Reynolds number are small. A thin film of uniform thickness εR is formed
between the drop and the wall. It is shown that Bretherton’s (1961) scaling ε ∝ Ca2/3

is appropriate for all values of λ, but with a coefficient of order unity that depends
weakly on both λ and Ca. The coefficient is determined using lubrication theory for
the thin film coupled to a novel two-dimensional boundary-integral representation of
the internal flow. It is found that as λ increases from zero, the film thickness increases
by a factor 42/3 to a plateau value when Ca−1/3 � λ� Ca−2/3 and then falls by a factor
22/3 as λ→ ∞. The multi-region asymptotic structure of the flow is also discussed.

1. Introduction
We investigate the effect of viscosity on the motion of a drop through a cylindrical

tube. The tube has radius R and contains fluid of viscosity µ. An axisymmetric drop
of a second immiscible fluid of viscosity λµ and volume larger than 4πR3/3 is driven
slowly through the tube by a pressure gradient, so that it moves relative to the tube
walls with a steady velocity U , as sketched in figure 1. Surface tension γ between the
two fluids is taken to be uniform, and both gravity and inertia are assumed negligible.
We suppose that the displaced fluid wets the tube wall so that a thin film is established
between the drop and the tube, having uniform thickness εR away from the front
of the drop, where ε � 1. The problem is controlled by two independent parameters:
the viscosity ratio λ; and the capillary number Ca = µU/γ . Our aim is to predict the
thickness ε as a function of λ and Ca in the limit Ca � 1.

Bretherton (1961) considered this problem in the case λ= 0, when the drop is an
inviscid bubble. The shape of a semi-infinite bubble in the low-Ca limit consists of
a hemispherical cap (region IIo in figure 1) connected to an annular film (region
Io) where the bubble has radius R(1 − ε). In the short intervening transition region
(region IIIo) there is a rapid curvature change and surface tension induces a pressure
gradient that drives a flow from region Io to region IIo. Bretherton showed that the
film thickness ε is proportional to Ca2/3 when Ca � 1 and is determined in region
IIIo alone, whose length scales as Ca1/3R. A sketch of this argument is provided in
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Figure 1. Sketch of a semi-infinite drop moving steadily through a cylindrical tube in the
frame of the drop tip, showing distinct asymptotic regions. The subscripts ‘o’ and ‘i’ denote
regions outside and inside the drop, respectively. The boundary between regions Ii (the
cylindrical body of the drop) and IIi (the cap) is artificial; velocity and lengthscales are the
same in both. The magnitude of the internal fluid velocity is V in Ii and IIi and V − vb in IIIi .

§ 2.1 below. The overall bubble length is irrelevant to this result provided that it is
sufficiently large for the transition regions at the front and rear of the bubble to be
well separated (see, for example, the computations of Martinez & Udell 1990).

Park & Homsy (1984) considered a drop of viscous fluid (λ> 0) in a Hele-Shaw cell
in the limit Ca � 1. They noted that Bretherton’s prediction for the film thickness is
unaffected provided λ� Ca−1/3, because only for very viscous drops are the dynamics
of the transition region modified. Even so, for 1 � λ� Ca−1/3 the internal and external
flows interact (albeit passively) around the cap of the drop. Once λ= O(Ca−1/3),
however, there is a non-trivial coupling between the internal and external flows in
region III, extending a distance Ca1/3R ∼ ε1/2R into the drop (figure 1). Fortunately,
since region IIIo has small aspect ratio and region III is small compared to the tube
radius, the Stokes flow in region IIIi reduces to that in a two-dimensional half-space.
We will investigate this interaction below by coupling lubrication theory for region
IIIo to a boundary-integral description of the flow in region IIIi .

For more viscous drops (Ca−1/3 � λ) it turns out that the internal and external flows
in region III decouple once again. The boundary velocity in the transition region is
now the sum of two parts: a slowly varying velocity corresponding to the global flow
within the drop; and an additional part that varies on the much shorter lengthscale
of the transition region itself. Provided the boundary velocity in the transition region
can be found, the film thickness can be determined. We will show, for example, that
once λ is increased to the range Ca−1/3 � λ� Ca−2/3, stresses associated with the
recirculating flow within the drop on the lengthscale R generate a velocity on the
interface that matches that of the wall. As is well known from studies of surfactant-
laden drops in tubes (e.g. Ratulowski & Chang 1990), such an interfacial flow leaves
the scaling ε ∼ Ca2/3 unaltered but increases the film thickness by a factor of 42/3

relative to the λ=0 case. When λ becomes as large as Ca−2/3, however, a further
modification takes place. Again the scaling ε ∼ Ca2/3 is valid, but the sluggish internal
flow reduces the interfacial velocity in the transition region, leading to a reduction in
film thickness. As λ → ∞, the drop boundary becomes effectively rigid everywhere (a
limit treated by Bretheron 1961) and the film thickness ends up only a factor of 22/3

thicker than the λ=0 case.
We therefore predict that the largest film thickness occurs for intermediate values

of λ, when Ca−1/3 � λ� Ca−2/3. Our conclusion differs from that of Schwartz, Princen
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& Kiss (1986), who overlooked the intermediate-λ regime. Our prediction appears
to be new for this problem, although thickening of films by a factor 42/3 has been
recognized previously for other coating systems (e.g. Shen et al. 2002). In particular, the
thickening factor 42/3 found by Ratulowski & Chang (1990), Stebe, Lin & Maldarelli
(1991) and Park (1991) for surfactant-laden bubbles moving through tubes agrees
with experimental results for some surfactant systems (Carroll & Lucassen 1973)
although, as noted by Quéré (1999), observations usually show a smaller factor (see
also Quéré De Ryck & Ou Ramdane 1997; Ou Ramdane & Quéré 1997). Similarly, we
do not expect the plateau in film thickness in the present surfactant-free problem to
be observed easily in experiment: for Ca−1/3 and Ca−2/3 to be separated by at least an
order of magnitude requires Ca � 10−3, for example. Nevertheless detailed estimates
below indicate that thickening of around 10% may arise for 30< λ< 100 when
Ca =10−3. We are not aware of any experimental or numerical observations of such
thickening for non-surfactant systems. Despite the potential experimental difficulties,
we believe that the insights offered by our analysis will be useful in understanding
the physical mechanisms operating in this system, and that the methods and results
described here may apply also to calculations of film thickness for coating and
meniscus-forming flows (see Quéré 1999) where a second viscous fluid is present.

The scalings and governing equations for the problem are described in § 2 and
§ 3. We show in particular that, when 1 � λ� Ca−1/3 and Ca−1/3 � λ� Ca−2/3, the
transitional zone between regions I and II develops a nested structure, with new (but
passive) regions encircling region III (see Appendices A and B). In order to compute
the coupled internal and external flows in region III when λ= O(Ca−1/3), we present
a novel variant on the boundary-integral technique for Stokes flows in Appendix C.
Numerical results are given in § 4 and are discussed in § 5.

2. Scaling estimates
We begin by using scaling arguments to develop an overall physical picture of the

flow. It is convenient to treat ε � 1 and λ as independent parameters and then to
determine the corresponding value of Ca � 1. Detailed analysis supporting the scaling
arguments is presented in § § 3 and 4.

2.1. Drop description and lengthscales

We suppose that the drop has the steady shape illustrated in figure 1. The film has
uniform thickness εR away from the front of the drop.

With cylindrical polar coordinates (Rr , Rz) fixed relative to the leading edge of
the drop, the tube is at r =1 and the drop boundary is r(z) = 1 − εh(z) in z � 0,
where h(z) is the non-dimensional film thickness. The curvature κ/R of the interface
is therefore

κ =
1

r
(
1 + r2

z

)1/2
− rzz(

1 + r2
z

)3/2
, (2.1)

which varies over region III from approximately 2/R in the hemispherical cap to
1/R in the cylindrical region I. Since rzz = −εhzz, region III has length scaling as
ε1/2R. Surface tension gives rise to an axial pressure gradient in the film of magnitude
γ /(ε1/2R2). Assuming, as we check below, that viscous stress gradients in the drop
are no larger than this estimate, a steady lubricating flow is driven in the film with
velocity scaling as γ ε3/2/µ. This velocity must be comparable to the speed of the
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Figure 2. Summary of the interface boundary condition to be applied for each region of the
drop. The viscosity ratio λ increases from left to right, defining cases (i)–(vii) as described in
the text. Here, ‘SLIP’ implies stress-free, whereas ‘NO-SLIP’ implies that the boundary velocity
is prescribed by the internal drop flow. Single-headed arrows show how the flow in one region
drives (or modifies) the flow in an adjacent region; double-headed arrows denote a non-trivial
coupling between flows in adjacent regions.

bubble U , and so

ε = F (λ, Ca) Ca2/3 (2.2)

for a film-thickness coefficient F of order unity that remains to be determined.

2.2. Internal flow and velocity scales

The interior and exterior flows may be coupled in each of regions I, II and III. We
consider each case below.

2.2.1. The region-I interface

The cylindrical body of the drop (region Ii) has lengthscale R, and the interior
velocity scale is V . The annular film has uniform thickness εR. Thus the stress in
the film has magnitude µ(U − V )/(εR) that balances the internal stress λµV/R. Thus
the magnitude of the internal flow is V ∼ U/(1 + λε), that scales as U if λ� ε−1

and U/λε � U if λ� ε−1. Only when λε =O(1) are the flows in regions Io and Ii

fully coupled in the sense that both must be calculated simultaneously; λε is the
interfacial mobility parameter (Davis, Schonberg & Rallison 1989) appropriate for
the main body of the drop. This interaction of flows along the region-I interface is
summarized in the top section of figure 2; the double-headed arrows show when the
coupled problem arises.

2.2.2. The region-II interface

The internal stirring flow generated in the main body of the drop extends to the
cap, so that V ∼ U for λ� ε−1. Both internal and external flows near the cap have
lengthscale R. If λ� 1, internal stresses λµV/R are negligible in comparison with
external stresses having magnitude µU/R. When λ∼ 1, internal and external stresses
are comparable so the external flow is modified. When 1 � λ� ε−1, the internal flow
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has magnitude U and is unaffected by the flow in region IIo, but when λ� ε−1, the
external flow past the cap is that past a drop with an effectively immobile interface.

The capillary number associated with the internal flow in the cap is λµV/γ . Using
the estimates above for V , this capillary number is no larger than ε−1µU/γ =Ca1/3.
Thus provided Ca � 1, the internal stress does not affect the cap shape, which remains
hemispherical for all λ.

2.2.3. The region-III interface

The transition region IIIo has lengthscale ε1/2R that is small compared with the
radius of the cap and of the tube. In consequence the interior Stokes flow in the
region IIIi is planar and equidimensional, extending a distance ε1/2R into the drop
interior. Furthermore for sufficiently small ε, this interior flow may be regarded as
taking place in a half-space. The flow field therefore has two different lengthscales
and the component of fluid velocity ubez along the drop boundary may be written in
the form

ub(z) = −V + vb(z); (2.3)

here V varies on a lengthscale R, is determined by the full drop size and shape, and
is approximately constant in the transition region, whereas vb varies on the smaller
lengthscale ε1/2R and is generally negligible outside the transition region. The film-
thickness coefficient F is determined in the transition region, and thus to find F we
need only find the values of V and vb.

Internal stresses in the transition region have magnitude λµV/(ε1/2R), and first
become comparable with the shear stress µU/(εR) in the film when λε1/2 is of order
unity. This is the interfacial mobility parameter (Davis et al. 1989) for the transition
region.

For 1 � λ� ε−1/2 the region-III interface remains stress-free, the external flow is
driven by the local curvature change and the film thickness is the same as that for
λ= 0, implying the existence of a stagnation point on the interface in region III
(Bretherton 1961). However, as we show below, a new asymptotic region appears
between regions II and III in which the internal flow is coupled to that in the film,
and over which the drop boundary velocity adjusts from the prescribed level V ∼ U in
region II to the stress-free condition in region III (we term this effect ‘remobilization’,
by analogy with surfactant-laden interfaces, as introduced by Stebe et al. 1991). The
passive ‘remobilization region’ described in Appendix A has length R/λ (i.e. large
compared with the transition region, but small compared with R). When λ∼ 1, the
remobilization region merges with the cap region II; when λ∼ ε−1/2 it merges with
region III. When 1 � λ� ε−1/2, we show below that an additional stagnation point
appears on the drop boundary in the remobilization region, approaching from the far
field (region II) as λ increases.

When λε1/2 is of order unity, V = U irrespective of the drop size and the internal flow
in region III becomes fully coupled to that in the film. The associated internal fluid
pressure has magnitude no larger than µU/εR and this is a factor ε1/2 smaller than the
capillary pressure γ /R. In consequence the scaling estimate (2.2) for ε is unaffected,
but the coefficient F (of order unity) is a function of λε1/2. As λε1/2 increases through
approximately 0.5, we show below that the two interfacial stagnation points merge,
so that for sufficiently large λ the interfacial flow in region III is unidirectional.

When ε−1/2 � λ� ε−1, again V =U but now velocity variations along the transition
region interface are suppressed and vb has size U/λε1/2. The flow driven by the cur-
vature change in region III extends a distance λεR into region I. This ‘weak-convection
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Figure 3. Sketches of approximate (and in cases b–d , proposed) streamline distributions for
the low-Ca motion of (a) an inviscid bubble with λ� 1, for which there is a single intefacial
stagnation point A; (b) a viscous drop with 1 � λ� ε−1/2, showing an additional interfacial
stagnation point B that approaches A as λ increases; (c) a viscous drop with λ= O(ε−1/2) for
which A and B merge; (d) ε−1/2 � λ.

region’ is considered in Appendix B. It has no effect on the film thickness. When
λ∼ ε−1, the weak-convection region merges with region I; when λ∼ ε−1/2 it merges
with the transition region.

When λ∼ ε−1, the magnitude of V is U/(1 + λε), its precise value depending on
the flow throughout the drop, and hence on the overall drop size. The film-thickness
coefficient F remains of order unity but depends on λε. Finally when λ� ε−1, the
interior fluid has velocity of magnitude U/λε � U , and the film thickness is that
appropriate for a drop with an immobile surface.

2.3. Flow patterns

While we shall not explicitly compute flow patterns outside region III, sufficient
is known from boundary conditions and topological constraints to sketch likely
streamline distributions corresponding to the transitions described above. Figure 3(a)
shows the well-known flow pattern around an inviscid drop (λ� 1)). A single
‘Bretherton’ stagnation point (A) lies on the drop interface in region III. The external
flow in region IIo drives a recirculating flow in IIi , as demonstrated numerically by
Westborg & Hassager (1989) and Martinez & Udell (1990). Once 1 � λ� ε−1/2, the
strengthening internal flow reduces the recirculation inside the drop and lowers the
interfacial velocity until a second stagnation point appears on the interface, labelled
B in figure 3(b). While our calculations below establish the existence of this second
stagnation point for 1 � λ� ε−1/2, we are not aware of computations in the literature
confirming this proposed streamline distribution, nor are we confident of the precise
nature of the topological transition between figures 3(a) and 3(b); in figure 3(b–d)
we have sketched the simplest flow fields consistent with the available evidence,
although other possibilities exist. As λ increases to O(ε−1/2), we show below that B

moves into region III (as the ‘remobilization’ region shrinks) until A and B coincide
(figure 3c). As λ increases further, mass conservation demands that the external flow
is partially reversed where region IIo meets region IIIo, since the thin film in region Io

can accommodate only a small proportion of the flux driven by the two converging
interfaces. Thus a stagnation point moves into the interior of the fluid in region IIIo,
as sketched in figure 3(d). Ghadiali & Gaver’s (2003) computations of low-Ca flow
past a surfactant-covered bubble show similarly distorted streamlines near the bubble
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tip, but we are not aware of numerical results directly identifying the proposed region
of recirculating flow ahead of the bubble tip in figure 3(d).

2.4. Summary of possible behaviours

Seven asymptotic regimes may therefore be identified, as summarized in figure 2:
(i) if λ� 1, the drop behaves as an inviscid bubble;
(ii) if λ∼ 1, there is a non-trivial coupling between the flows in and around the

cap (region II) but the film thickness is unaltered;
(iii) if 1 � λ� ε−1/2, the film thickness is unaltered from Bretherton’s (1961) λ=0

value, but there is a passive ‘remobilization region’ over which the flow in the transition
region matches on to the flow in the cap;

(iv) if λ∼ ε−1/2, there is a non-trivial coupling between the internal and external
flows in the transition region III and the film thickness depends on λε1/2;

(v) if ε−1/2 � λ� ε−1, the internal flow maintains the fluid velocity on the interface
in the transition region as V = U , and there is a passive ‘weak-convection region’ that
extends into the main body of the drop;

(vi) when λ∼ ε−1, there is a non-trivial coupling between the flows in regions Ii

and Io, and the film thickness depends on both λε and the overall drop shape;
(vii) if λ� ε−1 a slow internal flow is generated (with V ∼ U/λε � U ), and the film

thickness is that obtained by, for example, Schwartz et al. (1986) for an immobile
interface.

3. Governing equations for the transition region
We continue to treat ε and λ as independent parameters and seek Ca via the

O(1) film-thickness coefficient F (see (2.2)). Scaling lengths on R, velocities on U and
pressures on (µU )/(ε3/2R), the Stokes equations for the external fluid are

∇ · u = 0, 0 = −∇p + ε3/2∇2u. (3.1)

At r = 1, u = −ez. In addition, the velocity must match with the internal flow on
r = 1 − εh. The normal stress condition may be written using (2.2) as

pi − p + O
(
λε3/2V

)
= F 3/2κ, (3.2)

where pi is a constant internal pressure. The O(λε3/2V ) term arises from viscous
stresses in the drop that are negligible.

The film thickness is set in the transition region IIIo for which we write

z = −1 + ε1/2(x − x0), r = 1 − εy, (3.3)

for some constant x0 of order unity determined in the far field. The coordinate system
is shown in figure 4. Because ε is small, the governing equations for the film become
those of lubrication theory, namely

−px + uyy + O(ε) = 0, p = p(x) + O(ε) for 0 � y � h(x). (3.4)

Using (3.2), the pressure gradient is px = −F 3/2hxxx. The flow in the film is thus (using
(2.3))

u(x, y) = − 1
2
F 3/2hxxxy(y − h) + [−V + vb(x)]

y

h
+

y

h
− 1, (3.5)

with the associated flux QUεR2 given by

Q = 2π

∫ h

0

u(x, y) dy = 2π
[

1
12

F 3/2hxxxh
3 + 1

2
(−V + vb(x) − 1)h

]
. (3.6)
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Figure 4. Sketch of the transition region at the front of the drop.

For a steady motion, Q is independent of x and, in the limit x → −∞, the transition
region matches on to the constant-film-thickness region for which h = 1 and vb =0.
Therefore Q = −π(V + 1) and h(x) is governed by a flux balance between the flow
generated by surface tension and advection

1
6
F 3/2hxxxh

3 + (V + 1)(1 − h) + vbh = 0, (3.7)

with h → 1 as x → −∞. As x → ∞, the film matches on to the hemispherical cap
and therefore h ∼ 1

2
x2. Furthermore, translational invariance implies that we may

impose the additional condition h → 1
2
x2 + O(1) as x → ∞ so as to fix the origin x0.

For prescribed boundary velocities vb(x) and V , these conditions provide a unique
solution for both h(x) and F .

To close the problem we need vb(x) and V . This requires, in general, a determination
of the internal flow, but some cases can be simplified. If λε1/2 � 1 (cases (v)–(vii) in
§ 2.4), velocity variations along the transition region interface are suppressed, so that
vb ≈ 0 and (3.7) becomes

1
6
F 3/2 hxxxh

3 + (V + 1)(1 − h) = 0. (3.8)

The constant velocity V is driven by shear stresses in region I and may be found by
computing the internal flow on the tube radius scale R.

If λε � 1 (cases (i)–(v) discussed in § 2.4), then V matches the wall velocity so that
V =1 and (3.7) becomes

1
6
F 3/2 hxxxh

3 + 2(1 − h) + vb h = 0, (3.9)

and now we need only find vb(x) on the transition-region lengthscale ε1/2R. For this
purpose we consider the shear stress exerted on the drop boundary, given by (3.5) as

fb(x) = −uy |y=h = 1
2
F 3/2 hxxxh − vb/h. (3.10)

The F 3/2 term arises from the capillary-driven flow out of the film; the −vb/h term
corresponds to the Couette flow that drives fluid into the film. When h is large (x → ∞),
the first dominates and fb > 0, but when h ≈ 1 (x → −∞) the second dominates, and
fb < 0. The flow in the transition region thus consists of a uniform velocity with V =1,
together with a locally varying flow vb that is everywhere positive on the interface
and (for λ� 1) tends to zero as x → ± ∞. We may use (3.7) in (3.10) to write instead

fb(x) = −4vb/h + 6(h − 1)/h2. (3.11)
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Since ε � 1, the interior flow in the transition region IIi may be regarded as
two-dimensional and taking place in a half-space, so it is convenient to write
z = −1+ε1/2(x−x0), r = 1−ε1/2Y . With velocity (relative to the local mean flow −U ez)
and pressure scaled as before, we have

∇ · u = 0, −∇p + λ∇2u = 0 (3.12)

in Y � 0, where ∇ is now the gradient operator in the (x, Y )-plane. As |x| → ∞,
u → 0. On Y = 0, the drop interface, the boundary condition is u · n = 0. In addition,
the tangential traction fb(x) must be related to the tangential velocity vb(x). This
problem is well-suited to a boundary-integral method that we describe in Appendix
C, which yields

fb(x) = −2λε1/2

π
−
∫ ∞

−∞

vb(ξ ) − vb(x)

(ξ − x)2
dξ. (3.13)

4. Results
We seek the solution of the problem defined by (3.9), (3.11), (3.13) and corresponding

boundary conditions, from which we can determine the dependence of the film-
thickness coefficient on the viscosity ration λε1/2. We begin by considering the limiting
cases λε1/2 � 1 and λε1/2 � 1.

4.1. Low-viscosity drops, λ� ε−1/2

It is convenient to rescale (3.9) by setting ξ = 31/3F −1/2x, so that

1
2
hξξξh

3 + 2(1 − h) + vb h = 0. (4.1)

The boundary conditions become

h → 1 as ξ → −∞, (4.2a)

h → 1
2
3−2/3F ξ 2 + O(1) as ξ → ∞. (4.2b)

We have shown that if λ� ε−1/2 the drop boundary remains stress-free in region III so
that fb = 0. It follows from (3.11) that vb = 3(h − 1)/2h. Therefore vb → 0 as ξ → −∞
and vb → 3/2 as ξ → ∞, with a stagnation point (vb = 1) when h = 3. Equation (4.1)
then reduces to the Landau–Levich equation,

hξξξh
3 + 1 − h = 0. (4.3)

This widely studied equation has a unique solution with F =F0 ≈ 1.337 (Bretherton
1961).

For 1 � λ� ε−1/2 there is a passive ‘remobilization region,’ examined in Appendix
A, where the drop boundary mobilizes between the prescribed velocity in the cap
(where vb = 0) to the stress-free condition at the outer edge of the transition region
(where vb = 3/2). In addition to the stagnation point at h = 3, a second stagnation
point appears a distance 5.6R/λ from the first (figure 10 in Appendix A). Between
the two, there is a reverse flow along the drop interface; the likely streamline pattern
is sketched in figure figure 3(b). The film thickness is unaffected to leading order.

4.2. High-viscosity drops, λ� ε−1/2

Writing ξ = 61/3F −1/2(V + 1)1/3x recasts (3.8) in the Landau–Levich form (4.3). The
boundary conditions become

h → 1 as ξ → −∞, (4.4a)

h → 1
2
6−2/3(V + 1)−2/3F ξ 2 + O(1) as ξ → ∞, (4.4b)
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and so the film thickness is F = 22/3F0(V + 1)2/3. In general V can be determined
only by finding the flow in the body of the drop numerically. However, in two
cases V is known explicitly. When ε−1/2 � λ� ε−1 the boundary moves with the
same speed as the wall so that V = 1; and if λ� ε−1, the drop boundary becomes
immobile so that V = 0. In the latter case (labelled (vii) in § 2.4), the film thickness
is F∞ =22/3F0 ≈ 2.123. For the ‘plateau regime’ (labelled (v) in § 2.4) the film is even
thicker, with F =FP = 42/3F0 ≈ 3.370. For a drop whose surface has been partially
rigidified by surfactant the same result has been obtained by Ratulowski & Chang
(1990).

When λ∼ ε−1, we can estimate V by calculating the speed of the fluid at the
cylindrical interface away from the ends of the drop. The flow in the main body
of the drop is unidirectional and there is no net flux of fluid. In consequence,
u =V (1 − 2r2). In the annular film, the flow is Couette with u =(1 − V )(1 − r)/ε − 1.
Balancing tractions at the interface we obtain V = 1/(1+4λε). This gives the estimate

F ≈ 22/3F0

(
2 + 4λCa2/3F

1 + 4λCa2/3F

)2/3

, (4.5)

though since within an order-R distance of the end of the drop the internal flow is
not unidirectional, this result is not exact. Results showing F as a function of λ and
Ca (decreasing monotonically from FP to F∞ as each increases) are shown in figure 9
below.

4.3. Intermediate-viscosity drops, λ∼ ε−1/2

When λ∼ ε−1/2, the coupled equations (3.9), (3.11), (3.13) for h(x), fb(x) and vb(x)
must be solved for the transition region. After writing ξ = 61/3 F −1/2 x, these equations
become

hξξξh
3 + 2(1 − h) + vb h = 0, (4.6a)

fb(ξ ) = −4vb

h
+

6(h − 1)

h2
= −λ̃−

∫ ∞

−∞

vb(ξ̃ ) − vb(ξ )

(ξ̃ − ξ )2
dξ̃ , (4.6b)

where the the inverse interface mobility parameter (Davis et al. 1989) is
λ̃ = 2λ61/3ε1/2/πF 1/2 = 2(6Ca)1/3λ/π. The boundary conditions are

vb → 0, h → 1 as ξ → −∞,

vb → 0, h → 1

2
6−2/3Fξ 2 + O(1) as ξ → ∞.

(4.6c)

4.3.1. Far-field estimates

Before embarking on a numerical solution of (4.6a–c), we consider the far-field
limits. On integrating by parts, (4.6b) gives

fb(ξ ) = −λ̃−
∫ ∞

−∞

v′
b(ξ̃ )

ξ̃ − ξ
dξ̃ , (4.7)

a Hilbert transform with inverse

vb(ξ ) = − 1

π2λ̃
−
∫ ∞

−∞
fb(ξ̃ ) ln|ξ̃ − ξ | dξ̃ . (4.8)
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The leading-order term in fb as ξ → ∞ is, from (4.6b), 12 62/3/F ξ 2, so in this limit
(4.7) becomes

12 62/3

Fξ 2
= −λ̃−

∫ ∞

−∞

v′
b(ξ̃ )

ξ̃ − ξ
dξ̃ , (4.9)

indicating that for small λ̃ and large ξ an outer region of length λ̃−1 appears, over
which vb adjusts from 3/2 to zero. This is the ‘remobilization region’ considered in
Appendix A. For non-zero λ̃, the leading-order behaviour of vb in the limit ξ → ∞
comes from the corresponding far-field behaviour of fb, and (4.8) gives

vb ∼
(
12 62/3

/
π2F λ̃

)
ln(ξ )

/
ξ + O(1/ξ ) as ξ → ∞. (4.10)

Thus vb decays slightly more slowly than the velocity generated by a two-dimensional
force dipole.

For non-zero λ̃, the kernel in (4.6b) generates algebraic decay in vb as ξ → −∞.
In consequence (4.6a) implies that there is also algebraic decay of h as ξ → −∞,
rather than the exponential decay encountered in (4.3). Thus from (4.6a, b) we have
h = 1 + vb/2, fb = −vb as ξ → −∞. The total force that can be applied by the film to
the drop is zero, so ∫ ∞

−∞
fb(ξ ) dξ = 0. (4.11)

If this integral is to remain finite we certainly need fb = o(1/ξ ) and hence also
vb = o(1/ξ ) as ξ → −∞.

For large λ̃, (4.8) implies that vb is of magnitude λ̃−1. Thus, in order that the
total force remains zero, vb must decay on a lengthscale λ̃ as ξ → −∞. This is the
‘weak-convection region’ discussed in Appendix B, where we show that vb decays like
(ξ ln |ξ |)−2 as ξ → −∞.

4.3.2. Numerical method

Surface points ξi (i = 1, . . . , n) equally spaced along the region-III interface were
chosen (typically ξ1 = −20, ξn =80, n= 1000), and the integral in (4.6b) was evaluated
between ξ1 and ξn using the trapezoidal rule so as to reduce the integral equation to
a matrix equation for the velocities vb(ξi) (i = 1, . . . , n). This equation may be solved
by Gaussian elimination, using the λ= 0 solution for h(ξ ) as a first guess on the
right-hand side. This gives vb, and (4.6a) provides an improved estimate for h(ξ ). The
differential equation may be solved using a shooting method, starting from ξ = ξ1 < 0
with

h = 1 + 1
2
vb(ξ1) + A exp

(
21/3ξ1

)
, (4.12)

for some constant A and vb obtained from the previous iteration. This Picard iteration
for vb and h converges to two significant figures in about ten iterations.

We removed the singular behaviour at ξ̃ = ξ by integrating up to ξ − δ (for some
δ � 1) and then from ξ + δ onward, checking that the size of δ has no effect on the
results for F .

Since vb → 0 as ξ → ± ∞, we began by taking vb = 0 outside the numerical domain,
i.e. we estimated the contribution to the integral in (4.6b) for ξ > ξn as

λ̃

∫ ∞

ξn

vb(ξ )

(ξ̃ − ξ )2
dξ̃ = λ̃

vb(ξ )

ξn − ξ
,

and equivalently for ξ < ξ1. As can be seen from figure 5(a) for λ̃=1, this method
is inaccurate because the decay of vb as ξ → ∞ is slow. Errors are even greater for
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Figure 5. Effect of domain size for λ̃= 1, taking vb = 0 outside the numerical domain (−20, ξn),
for ξn = 20, 30, 40, 50, 60, 70, 80, 90, 100. (a) Velocity vb; solid lines show the known solution
for λ̃= 0 and the result for λ̃= 1 extrapolated to ξn = ∞; dashed lines show for each finite
domain size the results for λ̃= 1. (b) Film-thickness coefficient F/62/3 for λ̃= 1. The dashed
curve is the numerical fit 0.501 + 0.67/ξn, suggesting that for a numerical domain of infinite
length F/62/3 = 0.501.

large or small λ̃, since the decay takes place over a length λ̃ or λ̃−1 respectively that
is not captured. We were able, however, to obtain estimates for F by extrapolation,
as shown in figure 5(b), and also to confirm that vb does decay at a rate comparable
to 1/ξ as ξ → ∞ and to 1/ξ 2 as ξ → −∞.

To improve the accuracy, we included additional terms in the far-field representation
of vb. For a finite range the logarithm in (4.10) is indistinguishable from a constant, so
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Figure 6. Error estimate Γ defined by (4.13), for a numerical domain −20 � ξ � 80. The
insets show the behaviour of the tail of fb as ξ → −∞.

we put vb(ξ ) = B>/ξ for ξ > ξn, with the coefficient B> determined from the previous
iteration. The contribution to the integral (4.6b) for ξ > ξn may then be estimated as

λ̃B>

(
1

ξ 2
ln

(
ξn

ξn − ξ

)
− 1

ξ (ξn − ξ )

)
+ λ̃

vb(ξ )

ξn − ξ
.

Similarly, writing vb(ξ ) = B</ξ 2 for ξ < ξ1 gives a contribution to the integral for
ξ < ξ1 as

λ̃B<

(
2

ξ 3
ln

(
ξ1 − ξ

ξ1

)
+

2ξ1 − ξ

ξ 2ξ1(ξ1 − ξ )

)
− λ̃

vb(ξ )

ξ1 − ξ
.

Using this method we were able to find results for F correct to two significant
figures for a domain (−20, 80) and n= 1000. We reproduced these results over the
domain (−256, 256) by using a relaxation method to determine h on an exponentially
stretched ξ -grid, using a linear approximation for vb on each integration panel. Further
details of the numerical scheme are provided in Hodges (2003).

A test of the accuracy of the results is that the total force on the drop should be
zero. Figure 6 shows calculated values of

Γ =

∫ ∞

−∞
fb(ξ )dξ

/ ∫ ∞

−∞
|fb(ξ )|dξ, (4.13)

for λ̃ between 1
4

and 100, and a numerical range −20 � ξ � 80. The results suggest

typical errors of 10% in fb, increasing with λ̃. The reason for the increasing error
is that we do not capture the long tail of size λ̃ when λ̃ is large (see figure 6). The
errors are halved on a domain (−256, 256). Surprisingly, these errors at large λ̃ do
not significantly affect the film-thickness coefficient F : when λ̃ is large, vb is small
and so has only a small effect on h.
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Figure 7. Film thickness F as a function of λ̃= 2(6Ca)1/3λ/π. Dashed curves show the
numerical fits: (i) F0 + 0.3 λ̃ and (ii) FP − 9.2/λ̃.

4.3.3. Numerical results

Solutions to (4.6a–c) were computed for values of λ̃ between 1
4

and 100. Figure 7
shows the film-thickness coefficient F , which in this parameter regime is monotone
increasing with λ̃.

Figure 8 shows, for each value of λ̃, vb and fb along the transition-region interface.
As λ̃→ 0, vb resembles the velocity distribution for λ= 0, except that at large ξ , vb

decays like ln(ξ )/ξ over a lengthscale λ̃−1. This is the ‘remobilization’ discussed in
Appendix A.

As λ̃ increases, vb falls, but the traction fb increases near ξ = 0; vb(ξ ) is everywhere
less than 1 when λ̃ � 0.5 and thus, as shown by (3.5), the stagnation points on the
drop merge and one moves into the fluid, as sketched in figure 3(c, d). As λ̃→ ∞,
fb consists of a (finite) positive traction near ξ = 0, together with a weak negative
traction in ξ < 0 where fb remains of magnitude λ̃−1 over a distance λ̃. This is the
‘weak-convection’ regime discussed in Appendix B.

5. Discussion
We have investigated the effect of drop viscosity on the film thickness surrounding

a drop moving steadily through a cylindrical tube. In all cases, the film thickness ε

scales as Ca2/3 for Ca � 1. We anticipate that the same methods of asymptotic and
numerical analysis will also be appropriate in other coating problems involving the
interaction of a viscous fluid with a thin layer of a relatively inviscid fluid.

As is well-known (Schwartz et al. 1986), the film surrounding a near-rigid drop
(λ → ∞) is thicker by a factor of 22/3 than for an inviscid bubble (λ= 0). Previous
experiments and computations for surfactant-free systems (e.g. Fairbrother & Stubbs
1935; Taylor 1961; Goldsmith & Mason 1963; Martinez & Udell 1990) have suggested
either a monotonic increase in the film-thickness coefficient F from F0 to F∞, or else
were unable to detect a significant dependence of F on λ (Chen 1986; Westborg &
Hassager 1989). We have shown here that for intermediate values of λ, the film can be
thicker by up to a factor 42/3. The theory presented in this paper is formally valid in
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Figure 8. Numerical solutions to (4.6a, b) showing (a) velocity vb; (b) shear traction fb

along the transition region interface. Results shown for λ̃= 0, 1
4
, 1

2
, 1, 2, 4, 6, 8, 10, 15, 20, 25,

30, 40, 50, 70 and 100. The case λ̃= 0 is the top curve in (a) and the bottom curve in (b).

the limit Ca → 0 for which the viscosity ratios Ca−1/3 and Ca−2/3 are well-separated,
and in that limit a plateau appears. Figure 9 shows F as a function of viscosity
ratio for (a) Ca = 10−21, (b) Ca = 10−12 and (c) Ca =10−3. In each case the curve
shown is a ‘patch’ of the theories for λCa1/3 ∼ 1 shown in figure 7 together with
that for λCa2/3 ∼ 1 from (4.5). Somewhat disappointingly, the results indicate that to
observe a well-defined plateau experimentally would require a capillary number as
small as Ca = 10−18 with λ in the range 106 to 1012. For more accessible capillary
numbers (e.g. Ca = 10−3) the λCa1/3 = O(1) and λCa2/3 =O(1) regimes overlap, so that
the predicted maximum film thickness is only a little greater than F∞ — the figure
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Figure 9. Film thickness: results showing F as a function of λCa1/3 (left, as in figure 7) and
of λCa2/3 (right, as in (4.5)) for (a) Ca= 10−21; (b) Ca = 10−12; and (c) Ca = 10−3. Also
shown are the asymptotes F0 ≈ 1.34, FP ≈ 3.37 and F∞ ≈ 2.12.

suggests by about 12%. Furthermore, this overshoot may only be observed over a
limited range of λ, approximately 30 < λ< 100. For Ca sufficiently large (> 0.1), the
film thickness increases monotonically from F0 to F∞ (Martinez & Udell 1990). We
do not know the value of Ca at which the maximum disappears.

Experimental and computational studies are needed to corroborate the existence of
a plateau and overshoot in film thickness and to determine how small Ca needs to be
for an overshoot to appear. A number of experimental difficulties are likely to arise
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Figure 10. Sketch showing the remobilization region for 1 � λ� ε−1/2. A and B correspond
to the stagnation points sketched in figure 3(b).

in such an investigation. First, λ must be large, and therefore a long time (or a long
tube) is needed to establish an equilibrium film thickness. Second, for small values
of Ca the film is thin, leading to possible rupture (or film thickening) by van der
Waals forces (Teletzke, Davis & Scriven 1988). Third, readjustment of the film over
long lengthscales via coupling to the core flow may also be significant (Cachile et al.
1996). Fourth, surfactant impurities are hard to eliminate and are likely to complicate
the observed behaviour. Nevertheless we hope that this paper will stimulate such
experiments. In addition, the complex streamline patterns of § 2 that we have, in
part, conjectured merit further investigation; they present a difficult computational
challenge in view of the disparity in lengthscales involved.

S. R. H. acknowledges with gratitude a Research Studentship from the EPSRC.

Appendix A. Remobilization regime for 1 � λ� ε−1/2

If 1 � λ� ε−1/2 the drop boundary in region III0 is stress-free and its velocity is
given by ub = −1 + vb, vb = 3(h − 1)/2h. Thus as h → ∞, ub = 1

2
, as for the inviscid

Bretherton problem. However, the fluid velocity along the drop boundary in region II0

is driven by stirring within the drop, on a lengthscale comparable with the tube radius.
Near the tube wall in region II0, therefore, ub = −1. It follows that a ‘remobilization
region’ appears (labelled region IV in figure 10) between regions II and III, within
which vb varies between 0 and 3

2
. Region IV has O(1) aspect ratio and has region III

embedded within it.
We denote the horizontal length of region IV by LR, for some ε−1/2 � L � 1.

The greatest film thickness in region IVo is then L2R. Stresses within the drop have
magnitude λµU/LR, balanced by film stresses µU/L2R. It follows that L ∼ 1/λ.
When λ∼ ε−1/2 the remobilization region merges with the transition region III; when
λ∼ 1 the remobilization region merges with the cap in region II.

For region IVo we write z = −1 + X/λ and consider the outer limit of region IIIo,
so that the dimensional stress along the interface is µUλ2fb/R, where, from (3.11)

fb(X) = H (X)(12 − 8vb)/X2, (A 1)
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Figure 11. Numerical solution to remobilization problem (A4). Dashed curves show
(i) 3/2 − 3X/8π; (ii) 6 lnX/πX + 16.2/X; (iii) 3/πX; (iv) 12/X2.

with H (X) a Heaviside function. Then the boundary-integral representation (3.13)
gives, in X � 0,

fb(X) =
12 − 8vb

X2
= − 2

π
−
∫ ∞

−∞

vb(X̃) − vb(X)

(X̃ − X)2
dX̃, (A 2)

with inverse (4.8)

vb(X) = − 1

2π
−
∫ ∞

0

fb(X̃) ln |X̃ − X| dX̃ (X � 0). (A 3)

Now vb = 0 for X < 0, and so in X > 0

fb(X) =
12 − 8vb(X)

X2
=

2

π

vb(X)

X
− 2

π
−
∫ ∞

0

vb(X̃) − vb(X)

(X̃ − X)2
dX̃. (A 4)

Thus vb → 0 as X → ∞ and

fb(X) ∼ 3

πX
, vb(X) ∼ 3

2
− 3X

8π
as X → 0 + . (A 5)

Equation (A 4) may be solved over a numerical domain [δ, Xn] for some δ � 1 and
Xn � 1. Using (A 5), the contribution to the integral (A 4) for 0 � X � δ is

3

8π

(
X

δ − X
− ln(X − δ) + 1 + ln X

)
−

(
3

2
− vb(X)

) (
1

δ − X
+

1

X

)
.

Since fb ∼ 12/X2 as X → ∞, (A 3) gives vb(X) = 6 ln X/(πX) + O(1/X) as X → ∞.
Approximating vb as vb(X) = B>/X for X � Xn, the contribution to the integral in
(A 4) for X � Xn is

2B>

π

(
1

X2
ln

(
Xn

Xn − X

)
− 1

X(Xn − X)

)
+

2

π

vb(X)

Xn − X
.

Equation (A 4) may now be solved iteratively, updating B> at each iteration until
its value is unchanged to two significant figures; this takes about ten iterations. The
accuracy of the solutions presented in figure 11 was checked by varying the values
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Figure 12. Sketch showing the weak-convection region for ε−1/2 � λ� ε−1.

of δ and Xn. As shown in figure 11, vb =1 at X ≈ 5.6. Therefore, the ‘Bretherton’
stagnation point (labelled A in figures 3(b) and 10) on the interface at X = 0 and
the ‘remobilization’ stagnation point on the interface (B in figure 10) are separated
by a distance 5.6R/λ. The singular behaviour of fb as X → 0+ in (A 5) arises from
the abrupt change in vb across region III; this is smoothed by an ‘inner’ solution in
region III.

Appendix B. Weak–convection regime for ε−1/2 � λ� ε−1

When λ̃∼ λε1/2 � 1, the interfacial velocity in the transition region III differs from
U by a small correction vb of dimensional size λ̃−1U . This velocity difference induces
a shear stress in the film of size µ vb/εR, balanced by an internal stress that scales as
λµ vb/L, where L ∼ λεR is the associated lengthscale. Thus a new ‘weak-convection
region’ (labelled region V in figure 12) appears between regions I and III. It merges
with the transition region III when λ∼ ε−1/2, and with the flow on the lengthscale of
the tube when λ∼ ε−1. The flow is driven by the rapid curvature change that takes
place in the relatively small region III.

We may examine the parameter regime ε−1/2 � λ� ε−1 by considering (4.6a) and
(4.6b) in the limit λ̃→ ∞. At leading order, vb = 0 so that

hξξξh
3 + 2(1 − h) = 0, fb = 6(h − 1)/h2. (B 1)

The film thickness then has the ‘plateau value’ Fp . Furthermore, the total force applied
to the drop which arises from shear stresses induced by surface tension in region III
is

Fb ≡
∫ ∞

−∞
fb(ξ ) dξ = 6

∫ ∞

−∞
(h − 1)/h2 dξ ≈ 8.8. (B 2)

This force is balanced by a shear stress of magnitude λ̃−1 acting over a distance λ̃
in the weak-convection region, for which we write X = ξ/λ̃. On this long lengthscale,
(4.6a) becomes h = 1 + vb/2, and therefore fb = −vb in X < 0, with fb =0 in X > 0.
This stress in X < 0 results from a Couette flow in the film; the contribution from
surface tension is negligible since the drop boundary is flat. The force balance implies
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Figure 13. Boundary velocity for the weak-convection regime. Dashed curves show
(i) λ̃ vb = −8.8 ln |X|/π2; (ii) λ̃ vb = 8.8 (π/X ln |X|)2.

that ∫ 0

−∞
vb dX = Fb/λ̃. (B 3)

On this scale the region-III force becomes a δ-function concentrated at X = 0, so
fb = Fbδ(X)−vb(X)H (−X). The boundary velocity vb(X) satisfies the integral equation
(4.8), so that, using (B 3),

vb(X) − 1

π2
−
∫ 0

−∞
vb(X̃) ln |X̃ − X| dX̃ = − Fb

π2λ̃
ln |X|. (B 4)

An explicit form for vb(X) may be obtained by using Laplace transforms for the
convolution integral and a Hankel inversion contour for the logarithmic branch cut,
giving

λ̃ vb(X) = Fbπ2

∫ ∞

0

s esX
/ [

(ln s + γ − π2s)2 + π2
]

ds, X < 0, (B 5)

where γ is Euler’s constant. Asymptotic forms are

λ̃ vb(X) ∼ −Fb ln |X|/π2, X → 0

∼ Fb(π/X ln |X|)2, X → − ∞. (B 6)

The function λ̃ vb is shown on in figure 13. The singular behaviour at X = 0 is
smoothed by an inner solution in region III, and corresponds to the point force seen
by the outer flow in region V. The behaviour at X → − ∞ is determined by the
asymptotic behaviour fb = −vb in the far field. As shown in figure 13, the asymptote
is attained only for X < −100.

Appendix C. Boundary-integral formulation for a planar Stokes flow
Consider a Stokes flow of a fluid having viscosity λµ in a connected planar

region with smooth boundary ∂S and outward normal n. The conventional integral
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representation of such a flow gives the velocity u at a point x0 as an integral that
involves u on the boundary and the surface traction f = σ · n (variables in this
Appendix are dimensional). Specifically (Pozrikidis 1992),

χ(x0) u(x0) = −
∫

∂S

[J(R) · f (x) − u(x) · K(R) · n(x)] dSx, (C 1)

where R ≡ x − x0 and J and K are the velocity and stress tensors generated by a
point force, given in two dimensions as

J = (1/4πλµ)(−I log R + RR/R2), K = −(1/π)RRR/R4, R = |R|. (C 2)

The function χ(x0) has the value 1 if x0 lies strictly inside the fluid, zero if it
lies outside and 1

2
if x0 lies on the surface ∂S. The discontinuity arises from the

term involving K; since K is singular like 1/R, the integral must be interpreted in a
Cauchy-principal-value sense.

In two dimensions the formulation (C 1) presents potential difficulties for
computation, especially in unbounded domains, because of the logarithmic growth
of J as R → ∞. We therefore develop an alternative formulation ((C 8) below) in
which the traction f is written as a boundary integral of the velocity u, for which
the far field decays more rapidly. Taking x0 either inside or outside S, but not on
the boundary ∂S, an expression for the pressure may be obtained from the Stokes
equations, ∇p = λµ ∇2u. Equation (C 1) gives

χ(x0) p(x0) =

∫
∂S

[L(R) · f (x) + u(x) · M(R) · n(x)] dSx, (C 3)

where the tensors L and M are defined by

L = −R/2πR2, M = (λµ/π)(I/R2 − 2RR/R4). (C 4)

Since σ = −p I + λµ(∇u + ∇uT ) we can now write the stress in integral form:

χ(x0) σ (x0) =

∫
∂S

[K(R) · f (x) − u(x) · N(R) · n(x)] dSx, (C 5)

where

Nijkl =
λµ

π

(
δjkδil

1

R2
+δij

RkRl

R4
+δik

RjRl

R4
+δjl

RiRk

R4
+δkl

RiRj

R4
− 8

RiRjRkRl

R6

)
. (C 6)

It is straightforward to check that ∇ · N = 0. Therefore we may replace u(x) by
u(x) − u(x0) in equation (C 5), so that for any fixed vector n0

χ(x0) σ (x0) · n0 =

∫
∂S

[n0 · K(R) · f (x) − (u(x) − u(x0)) · N(R): n(x)n0] dSx . (C 7)

We now take the limit as x0 approaches the surface from either inside or outside S,
noting the discontinuity in the integral involving K described above. We then regard
n0 as the normal at x0, and

1
2

f (x0) = −
∫

∂S

[n(x0) · K(R) · f (x) − (u(x) − u(x0)) · N(R) : n(x)n(x0)] dSx . (C 8)

This provides the integral expression for the surface traction in terms of the fluid
velocity u(x0) on the boundary. Of course the problem posed can have a solution
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only if the total force and couple acting on ∂S and the total mass flux through ∂S

are all zero.
In the special case of a flow in the half-plane Y � 0 generated by tractions acting on

the boundary Y =0, symmetry implies that a purely tangential traction ft (x) = ex · f
generates a purely tangential velocity ut (x) = ex · u on the boundary (and a purely
normal traction generates a purely normal velocity on the boundary, see for example
Jansons & Lister 1988). For a half-plane we have

n(x0) · K= −(1/πR4) n(x0) · RRR = 0, (C 9)

since n · R = 0, and therefore for a purely tangential flow (C 8) reduces to

ft (x0) = −2λµ

π
−
∫ ∞

−∞

ut (x) − ut (x0)

(x − x0)2
dx. (C 10)

Equation (C 10) can be derived directly for a half-plane by using (C 1) to write ut in
terms of ft , then inverting using a Hilbert transform (Jacqmin 2002). The result (C 8)
is more general, having applications to flows in other two-dimensional geometries.
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